	[image: image1.png]Mﬁnmuoo‘r.cz

Konference
MoodleMoot.cz 2014

PragoData Consulting, s.r.o.

ČZU v Praze

24. - 24. 6. 2014

Praha

	Maintaining a custom Moodle distribution
David Mudrák 1
1 Moodle HQ
david@moodle.com

Abstract: The paper describes a model of developing and maintaining own Moodle distribution customized for the given site's needs. Described solution has been adopted by Moodle HQ as a general model of maintenance for the community portals such as moodle.org. The composition of the distribution package consisting of the clean upstream code, add-ons and patches is discussed and demonstrated.
Keywords: Customization, distribution, deployment, Git
Background
At the end of 2013, Moodle HQ SITES team initiated a reorganisation of procedures and setup that Moodle HQ uses for deploying, maintaining and customizing of the PHP code for its own Moodle sites (such as moodle.org, dev.moodle.org, moodle.net, research.moodle.net etc.). The proposed model for the sites code maintenance has been discussed and finally approved and adopted.

The model is based on the Moodle deployment procedures developed at Lancaster University, UK described in details at Andrew Nicols’ blog posts Upgrading Moodle from Git [1] and Deploying Moodle – continued [2]. Dan Poltawski was involved in designing their model, too. The first prototype of this scheme has been successfully used while maintaining learn.moodle.net code for the MOOC 2013 course. Somewhat similar (though very simplified) model has been used for maintaining our MediaWiki running at docs.moodle.org.

The essential idea is that the code for all the sites is tracked in a single repository which itself is a clone of vanilla upstream moodle.git with individual branches for every single add-on, customization (hack) and so on, with strict naming conventions for branches and tags. This allows to track the overall status of the code deployed at a particular site, easily transfer patches from one site to another, quickly set up a local copy of the production site etc.

Actual tools to be used for the deployment are out of this model's scope. The model is designed so that it is perfectly manageable manually, or by custom scripts, or by advanced deployment tools like puppet.
Previous situation
Before this model was adopted, the code deployed at production sites had been semi-organised. There were sites based on moodle.git checkout with random add-on versions installed into it. Sometimes, upgrade has been done by overriding the checkout with new files (so the git-status reported dozens of locally modified or untracked files). Eventual local customization were often done online at the production site only (again leading to locally modified files against the used git repository).

This situation was very impending for SITES team developers who are responsible for preparing the code for the deployment. Even very simple questions like “What Moodle code is currently deployed at {site}?”, “What modifications were done at {site} against the vanilla upstream Moodle?” or “Has this commit been applied to {site}?” were quite difficult to answer.

Also, it was very difficult to prepare a local copy of the live system to actually work on. This applied both to eventual clone servers and mainly to site copies at the developer machines.
Inspiration

The proposed code maintenance model has been strongly influenced by the one developed at Lancaster University, UK. Their model, as described by Andrew Nicols in his blog posts, was developed back in Moodle 2.1 times and has been successfully used for upgrading their production sites several times up to recent versions.

LUNS use the same module for customer sites (Moodle, Mahara, RoundCube, and other software too). The Open University use a similar model.

To some extend, we (SITES team) were in similar situation that these big institutions. Looking after multiple Moodle sites with couple of add-ons installed to them, maintaining some local customizations, cherry-picking security patches etc. As experienced Git users they could use the unique features of this SCM to get their tasks done. Our own pilot (preparing learn.moodle.net code for the MOOC 2013 course) demonstrated that the model based on multiple Git branches composed into the final deployment one is suitable for our needs.

Background principles
Keep it tidy
Having the code in well defined state with well defined rules on how to transit from one state to another is a must. It simplifies the development and the overall maintenance. The rules suggested in this model may sound too complex initially. Once learnt, they should become obvious routine though.
Discipline is a must

To make the model work, one must follow the rules fully. This applies especially for small changes and fixes when one is tempted to just ssh to the live site and perform the fix there. No. It’s a one way ticket to the chaos. Even with a simple typo, the whole process has to be followed. This is similar to the integration machinery that moodle.git itself uses.
Keep it robust

The code maintenance model itself is not tied with any particular deployment tool. We will follow the procedures manually first. Once everything is tuned up and things become boring routine, we can come up with some automation (e.g. custom scripts). The point is that the site code can be easily deployed manually (e.g. at a local notebook) as well as automatically (e.g. via the puppet tool or the Debian packages used by the Lancaster University).

Sites code maintenance model

The essential principle of our deployment model is that the code for all our sites is tracked in a single repository which contains the vanilla upstream moodle.git commits together with individual branches for snapshots of every single add-on, customization (hack) and so on, with strict naming conventions for branches and tags. This allows to track the overall status of the code deployed at a particular site, easily transfer patches from one site to another, quickly set up a local copy of the production site etc.

Git repositories

All the production sites use the same Git repository as their “origin” remote. It is the only remote repository registered at the production sites. Let us call it sites.git in this paper.

This repository contains all the commits from the upstream moodle.git which is referred to as “vanilla” remote repository in this paper. The master branch in sites.git repository is disconnected from other branches. It has been created as an orphaned branch to hold the additional documentation and tools.

SITES developers regularly work with other repositories, especially with the ones where add-ons are being tracked.

Branches

The sites.git repository has many branches. Basically, every single logical set of commits (like adding a new add-on, implementation of a local hack or a backported patch) lives on a separate branch. When an upgrade to a new major version is being prepared, new branches are created. Advanced git tools and techniques (like cherry-picking, git-rebase --onto, git-format-patch and git-am etc.) are used when working with them.

Branches in sites.git strictly use the following naming conventions:
{sitecode}-{major}-{frankenstyle}-{addon|hack|fix}[-{desc}]
or
{sitecode}-{major}-set_{identifier}[-{addon|hack|fix}][-{desc}]
or
{sitecode}-{major}-{deploy|test}
{sitecode} is a unique prefix that identifies the site this branch is (or was) used at. It is basically the hostname part of the site’s URL. For example the code for https://moodle.org uses moodle.org, http://dev.moodle.org uses dev.moodle.org, etc.

{major} is the major Moodle version the site is running at. For example, all branches used for https://dev.moodle.org running at Moodle 2.6.x use the prefix dev.moodle.org-2.6.

{frankenstyle} identifies the area that the branch deals with. If it contains some add-on, it uses the add-on’s component name. If it is a patch against Moodle itself, it uses the name of the Moodle area it deals with. For example, moodle.net-2.7-core would be a prefix for a branch that modifies some Moodle core library at moodle.net site running at Moodle 2.7.x.

{addon|hack|fix} categories the branch. “addon” describes a branch that contains some add-on code. “hack” describes a branch that somehow modifies (customizes) some upstream code. “fix” is principally a hack that fixes a bug (ideally it has been reported upstream, but not released yet so it can’t be present at the corresponding “addon” branch.

{desc} is an optional short description so humans can quickly recall what the branch is about.

{identifier} is used to identify a set of features that should be handled together. In this case, the “set_identifier” replaces the frankenstyle part of the branch name. A typical example might be dev.moodle.org-2.7-set_bigbluebutton as a branch that holds both BigBlueButtonBN and RecordingsBN add-ons to be used for dev.moodle.org running at Moodle 2.7.x. Alternatively, the “set_identifier” is also used as a fall-back if the branch cannot be well described as addon, hack or fix.

{deploy} indicates the branch that holds the to-be-deployed code. In other words, this branch contains the deployment tag (see below). No commits can be added directly to this branch. It must always be created off the corresponding base tag (see below) with all other site branches merged into it. Again - every change goes to a specific branch which is then merged into this deployment branch.

Tags

Beside the vX.Y.Z tags coming from the vanilla upstream moodle.git, the sites.git repository use the following tags:

{sitecode}-{major}-base tags the point where all other corresponding {sitecode}-{major}-* branches are created. All branches for the given site and major version must be created off this tag. It should be a well defined point present on the master branch of moodle.git. Typically it will match the commit tagged with v2.x.0-beta, v2.x.0-rc1 or v2.x.0 depending on when the new major version for the site is to be created.

{sitecode}-v{minor}-r{rev} tags the code to be deployed. The {minor} is the most recent minor Moodle version contained in the tag. The {rev} is an incremental revision number for the given minor, the first revision is 0. This tag must be present on the matching {sitecode}-{major}-deploy or {sitecode}-{major}-test branch. For example, once the branch moodle.org-2.6-deploy is updated by merging a newly released Moodle 2.6.2 to it, a tag moodle.org-v2.6.2-r0 would be created. On the next update to be deployed, a tag moodle.org-v2.6.2-r1 would be used.

Commits

All the commits coming from moodle.git are present in sites.git too. On contrary, the *-addon branches contain just snapshots of the add-ons without tracking their history - even if they are addons maintained by HQ. We are not interested in 3rd party add-ons development history in this repository. Thence we use neither git submodules nor git subtrees here.
Example: Initial setup of a new site

Let us say there is Moodle 2.7.0 released and we are about to prepare a new site learn.moodle.net based on it. The developer composing the site could use following git commands at their notebook.

Clone the sites.git repository into a new working directory, set the “origin” repo to the sites.git.

$ cd ~/public_html

$ git clone {URL of the sites.git} learn.moodle.net-2.7
Register the upstream “vanilla” remote and fetch it
$ git remote add vanilla git://git.moodle.org/moodle.git

$ git fetch vanilla
Create a base tag that all the new branches will be based on.
$ git tag learn.moodle.net-2.7-base v2.7.0
Create the testing branch originating at the base tag.
$ git checkout -b learn.moodle.net-2.7-test learn.moodle.net-2.7-base
Push the testing branch to origin and set the tracking reference
$ git push -u origin learn.moodle.net-2.7-test
Example: Including an add-on at a site

This illustrates how a new add-on can be installed to a site. The add-on's snapshot must be first committed to a separate branch and then merged into the deployment branch.
Make sure we are up to date
$ cd ~/public_html/learn.moodle.net-2.7

$ git fetch origin

$ git checkout learn.moodle.net-2.7-test

$ git rebase origin/learn.moodle.net-2.7-test
Create a feature branch to hold the installed addon
$ git checkout -b learn.moodle.net-2.7-local_moodleorg-addon learn.moodle.net-2.7-base
Implement the feature. In this case, we would extract the addon code from its own repository (but without its .git directory) and then would add it to the branch.
$ git add local/moodleorg

$ git commit -m “MDLSITE-2989 Include local_moodleorg v20140918”
We just realized that we need to hack this add-on a bit for this site. So we create a new branch that will hold this hack.
$ git checkout -b learn.moodle.net-2.7-local_moodleorg-hack learn.moodle.net-2.7-base

$ git merge learn.moodle.net-2.7-local_moodleorg-addon

$ vim local/moodleorg/top/nagvercheck.php

$ git commit -a -m “MDLSITE-2991 Customize the Nagios check”
Merge both feature branches into the test branch
$ git checkout learn.moodle.net-2.7-test

$ git merge learn.moodle.net-2.7-local_moodleorg-addon learn.moodle.net-2.7-local_moodleorg-hack
Perform the testing. Once all is good, push all the branches to origin (again setting the tracking reference for them).
$ git push -u origin learn.moodle.net-2.7-local_moodleorg-addon learn.moodle.net-2.7-local_moodleorg-hack learn.moodle.net-2.7-test
Example: Deployment

Make sure we are up to date
$ cd ~/public_html/learn.moodle.net-2.7

$ git fetch origin

$ git checkout learn.moodle.net-2.7-test

$ git rebase origin/learn.moodle.net-2.7-test
Perform all required testing, make sure all feature branches are merged etc.
$ git push origin learn.moodle.net-2.7-test
If the deployment branch is not created yet, make a new one:
$ git checkout -b learn.moodle.net-2.7-deploy origin/learn.moodle.net-2.7-test

$ git push -u origin learn.moodle.net-2.7-deploy
Otherwise fetch it from origin, make sure it’s up to date and merge the tested branch.
$ git checkout learn.moodle.net-2.7-deploy

$ git rebase origin/learn.moodle.net-2.7-deploy

$ git merge origin/learn.moodle.net-2.7-test

$ git push origin learn.moodle.net-2.7-deploy
Tag the deployment revision
$ git tag learn.moodle.net-v2.7.0-rev0 origin/learn.moodle.net-2.7-deploy

$ git push origin tag learn.moodle.net-v2.7.0-rev0
Example: Updating a feature branch

When updating one of our feature branches, make the changes to that specific branch, and then merge them back in again.
Make sure the local branch is up-to-date.
$ cd ~/public_html/learn.moodle.net-2.7

$ git fetch origin

$ git checkout learn.moodle.net-2.7-local_moodleorg-addon

$ git rebase origin/learn.moodle.net-2.7-local_moodleorg-addon
Make required changes, e.g. replace the add-on code with a new version.
$ git add local/moodleorg

$ git commit -m “MDLSITE-3011 Upgrade local_moodleorg to rev abcd123”
Do not forget to keep the feature branches in origin, too.
$ git push origin learn.moodle.net-2.7-local_moodleorg-addon
Re-merge the feature branch to the testing branch.
$ git checkout learn.moodle.net-2.7-test

$ git rebase origin/learn.moodle.net-2.7-test

$ git merge origin/learn.moodle.net-2.7-local_moodleorg-addon

$ git push origin learn.moodle.net-2.7-test
Example: Updating site with Moodle minor release
$ cd ~/public_html/learn.moodle.net-2.7

$ git fetch origin

$ git checkout learn.moodle.net-2.7-test

$ git rebase origin/learn.moodle.net-2.7-test

$ git fetch vanilla

$ git merge v2.7.2

$ git push origin learn.moodle.net-2.7-test
Example: Updating site with Moodle major release

New base tag, testing branch and deployment branch are created.
All the *-addon (or -set*) branches are recreated as described above.
Other branches where we want to keep history (such as -hack or -fix branches) are rebased onto the new base tag.
$ git checkout -b learn.moodle.net-2.8-core-hack-frontpage origin/learn.moodle.net-2.7-core-hack-frontpage

$ git rebase --onto learn.moodle.net-2.8-base learn.moodle.net-2.8-core-hack-frontpage
In some cases, cherry-picking or rebasing onto like
$ git rebase --onto learn.moodle.net-2.8-base learn.moodle.net-2.8-local_moodleorg-hack~4 learn.moodle.net-2.8-local_moodleorg-hack
may be needed to resolve the conflicts.

References
Nicols, A. Thoughts and ramblings: Upgrading Moodle from Git [online]. 6 July 2013 [cit. 15 April 2014]. <http://thamblings.blogspot.cz/2013/07/upgrading-moodle-from-git.html>.

Nicols, A. Thoughts and ramblings: Deploying Moodle - continued [online]. 11 July 2013 [cit. 15 April 2014]. <http://thamblings.blogspot.cz/2013/07/deploying-moodle-continued.html>.
Author
[image: image2.png]

PhDr. David Mudrák, Ph.D.
david@moodle.com

Senior analyst developer

Moodle Pty Ltd
